1.0 Introduction

The astrolabe enjoyed great esteem, as no other instrument did, in the medieval world between Geoffrey Chaucer’s England and Firūz Shāh Tughluq’s Delhi. Its origins are, however, rather obscure. All that is known with certainty is that it was designed sometime after 150 BC when the stereographic projection, on which its construction is based, was said to have been invented by Hipparchus and that almost all its main components were fully developed by 530 AD when the earliest available work on it was composed by John Philoponus in Greek.1 The Islamic world preserved the Greek science of the astrolabe, as it did the other areas of Greek learning, elaborated upon it and disseminated it westwards and eastwards.

Again, we do not have any definite information when the astrolabe was introduced into India. Al-Bīrūnī, who wrote extensively on the astrolabe, may have introduced it to his Hindu interlocutors in north-western India in the first quarter of the eleventh century. There are stray references to Muslim scholars, who migrated from Central Asia in the subsequent centuries, employing the astrolabe for astronomical and astrological purposes in Delhi.

Definite evidence is available from the fourteenth century onwards. Contemporary chronicles report that Sultān Firūz Shāh Tughluq (r.1351-1388) got several astrolabes manufactured at Delhi and sponsored the composition

of manuals on the astrolabe both in Persian and in Sanskrit. In the following centuries, especially in the seventeenth, numerous astrolabes were produced in India with Arabic/Persian legends. These are generally classified as Indo-Persian astrolabes.

Hindu and Jain astronomers were also highly enthusiastic about this exotic, but versatile, instrument which they hailed in Sanskrit as Yantrarāja, ‘king of instruments’. They ‘appropriated’ it by composing more than a dozen Sanskrit manuals on it between the fourteenth and eighteenth centuries.

The very first Sanskrit manual on the astrolabe was composed in 1370 by a Jain monk called Mahendra Śūrī, who was a leading astronomer at the court of Firūz Shāh at Delhi. This work, entitled Yantrarāja, consists of five chapters. The first chapter provides various trigonometric parameters and tables needed for the construction of the astrolabe. The second chapter discusses the components of the astrolabe. The construction of the common northern astrolabe (saumya-yantra) and other variants is described in the third chapter, while the next one deals with the method of verifying whether an astrolabe is properly constructed or not. The final chapter discusses the use of the astrolabe as an observational and computational device and dwells on problems in astronomy and spherical trigonometry that can be solved by means of the astrolabe. Mahendra Śūrī’s pupil Malayendu Śūrī wrote a detailed commentary on the Yantrarāja. There survive today at least one hundred manuscript copies of the Yantrarāja, attesting to its great popularity.

Persian chronicles narrate that Firūz Shāh was interested not only in the commonly used northern astrolabe, but also in its variants, viz., the southern astrolabe and the composite astrolabe which is a combination of the two, and that he commissioned a very splendid specimen of the composite astrolabe.

5Mahendra Śūrī, Yantrarāja of Mahendra Śūrī together with the commentary of Malayenda Śūrī, and Yantrasīromaṇī of Viśrāma, ed. Krishnaśankara Keśavarāma Raikva, Bombay 1936.
The Earliest Extant Sanskrit Astrolabe

The earliest extant Sanskrit astrolabe was named Fīrūz Shāh’s Astrolabe (asturlāb-i Fīrūz Shāhī). The difference between these varieties is as follows. In the northern astrolabe (Arabic: asturlāb shumālī, Sanskrit: saumya-yantra), the rete contains pointers for stars situated between the north celestial pole and the Tropic of Capricorn. As against this, the rete of the southern astrolabe (Arabic: asturlāb janūbī, Sanskrit: yāmya-yantra) has pointers for stars that lie between the south celestial pole and the Tropic of Cancer. The third variant combines the features of these two and is called the north-south astrolabe (Arabic: asturlāb shumālī wa janubī, Sanskrit: mísra-yantra). The two variants are actually theoretical constructs and have no real practical value. This is evident from the fact that out of some three thousand and odd Islamic, European and Sanskrit astrolabes that are extant today, the southern and north-south variants account for less than a score of specimens. Even so, most of the Sanskrit writers discussed all the three varieties. In fact, in 1423 Padmanābha composed an exclusive manual on the southern astrolabe under the title Yantrarājādhikāra.

The next writer of note is Rāmacandra Vājapeyin who devoted the major part of his Yantraprakāśa (1428) to the astrolabe and declared that, if one knew the science of the astrolabe well, the entire universe would become comprehensible like the myrobalan fruit on one’s own palm (1.9: yasmin karāmalakavad vidite viditam bhaved viśvam).

The astrolabe received a great impetus from Sawai Jai Singh in the early eighteenth century. Although he preferred huge masonry instruments for astronomical observations, he had great esteem for the astrolabe on which he composed a manual in Sanskrit prose under the title Yantrarājaracanā. Even after Jai Singh’s time, the astrolabe continued to be discussed in several Sanskrit works.

These Sanskrit manuals on the astrolabe must naturally have been accompanied by the production of Sanskrit astrolabes, i.e., astrolabes with legends and numbers engraved in Sanskrit language and Devanāgarī script. In the

8 Together with an auto-commentary, available in MS G-1363 of the Asiatic Society, Kolkata, and MS 975/1886-92 of the Bhandarkar Oriental Research Institute, Pune.

course of my project of surveying the extant specimens of pre-modern Indian astronomical and time-measuring instruments. I have located nearly one hundred Sanskrit astrolabes in various museums and private collections in India, Europe and the US.

There is a basic difference between these Sanskrit astrolabes and the Islamic astrolabes. In Islamic culture, astrolabe making was not just a craft but a learned profession; the astrolabists were not mere metal workers, but also scholars well read in the literature on the instruments, well versed in astronomy, spherical trigonometry and other sciences. Here the same person prepared the technical design and then executed it from brass sheets. In the Hindu context, the technical design was drawn by the upper caste astronomer, and the actual manufacture was done by the lowly brass worker who may not even be literate. He managed to draw the lines and curves reasonably well, but often made mistakes in orthography.

Nevertheless, the large number of extant Sanskrit texts and Sanskrit astrolabes show the importance given to the astrolabe by the Hindu astronomers. We have noted that production of Sanskrit manuals commenced in the fourteenth century. Sanskrit astrolabes also must have been produced in that century, but those that survive are only from the seventeenth century onwards. I have identified the following ten astrolabes from the seventeenth century. Most of these were produced in Gujarat.

1. 1605 Made for Dāmodara, private collection, Brussels.
2. 1618 Anon, Raja Dinkar Kelkar Museum, Pune.
3. 1625 Made by Cakrapāṇi (present location unknown).
4. 1638 Made by Murāraji for Haranatha, Bhandarkar Oriental Research Institute, Pune.
5. 1642 Made by Kalyāṇa of Girinārāyaṇa-jñāti for Puruṣottama (present location unknown).

11It was auctioned in 2002; cf. Skinner, Bolton, USA, Auction Catalogue ‘Science & Technology featuring Mechanical Music,’ April 13, 2002, no. 244, pp. 38-39; only the material is extant.

The Earliest Extant Sanskrit Astrolabe

7. 1651 Made for Jīvatāpana, Oriental Institute, Vadodara.13
8. 1669 Made for Rāghavajit (present location unknown).14
9. 1673 Made for Indrajī, Pitt Rivers Museum, Oxford.15
10. Anonymous, not dated, but attributable to the seventeenth century, Sanskrit University, Varanasi.16

2.0 Dāmodara’s Astrolabe

The earliest of these, in fact, the earliest extant Sanskrit astrolabe, is the subject of this paper. It was produced at Ahmedabad for Dāmodara, son of Candīdāsa, and is now in a private collection in Brussels. There has been some controversy about its date and authenticity. I shall first describe the astrolabe as it is available today, comparing its construction, where necessary, with the other seventeenth century Sanskrit astrolabes and also with Indo-Persian astrolabes. I shall then explain the controversy, and finally establish its authenticity.

Since this is the earliest extant Sanskrit astrolabe, some extracts from the earliest Sanskrit manual on the astrolabe, viz. the Yantrarāja of Mahendra Sūri, dealing with the construction of the astrolabe, are given in the appendix. As stated above, this text was immensely popular in India. It will be shown that its influence is clearly discernable in the Sanskrit astrolabes of the seventeenth century, including the present astrolabe.

2.1 The Front of the Astrolabe

The present astrolabe is a large massive piece with a diameter of 276 mm, a height of 380 mm and a thickness of 10.3 mm. The body is surmounted by an elaborately pierced suspension bracket or crown (kirīṭa) with a very

14In 1936, it was in the possession of Raikva, who published 13 detailed illustrations of this astrolabe in his edition of Mahendra Sūri’s Yantrarāja (see n. 5 above) immediately after his introduction. Its present location is unknown.
wide base that stretches to about 106 degrees of arc (see Figure 117). The crown is worked à jour to produce an ornate pattern with a human figure entwined in vines and leaves. The surface of the crown is, however, plain and undecorated, and no attempt was made to smoothen and polish the sharp edges. There is a hole at the top of the crown through which passes a shackle (kaṇṭaka) with ornate terminals. A small ring (mudrikā) passes through the shackle. The shackle and the ring make it possible to suspend the astrolabe vertically and to rotate it all around. The ring is, however, much too small for this large astrolabe. Both the shackle and the ring have diamond-shaped cross-sections as in the contemporary Indo-Persian astrolabes. At the top of the crown, immediately below the hole is an inscription in Sanskrit in Devanāgarī letters which reads śrī-divyacaksūṣe namaḥ, ‘salutation to the divine eye,’ i.e. the sun.

The main body of the astrolabe, consisting of a thick brass disc with an upraised rim and the crown, was cast in one piece. It is called mater (kośṭakāgāra, lit. store-house, repository) because the recess inside the upraised rim accommodates several latitude plates and above them the perforated star map called rete. The upraised rim carries the degree scale in two columns or bands. The narrow inner band is graduated in single degrees of arc; the wider outer column is divided into groups of 3 degrees each and labelled with very elegant Devanāgarī numerals of western Indian style.

2.2 The Back of the Astrolabe

The back of the astrolabe (yantra-prsthā) (Figure 2) carries the diopter or alidade with which the celestial bodies are viewed and the angle of their elevation or altitude is measured. The alidade, which is pivoted to the centre, is a straight metal bar without any counter-change and is 265 mm long. It has pointed ends. A sighting tube is attached to it by means of two upright supports. The tube measures 290 mm and is slightly longer than the diameter of the astrolabe. This tube facilitates the sighting of the heavenly bodies and is a typical feature of Sanskrit astrolabes.

Islamic astrolabes, whether in India or outside, do not have sighting tubes attached to their alidades. The same is the case with European astrolabes.

17Photo credits: Figure 2 is from Christie’s, South Kensington, Time Measuring Instruments from THE TIME MUSEUM, for sale by Auction, Thursday 14 April 1988, Catalogue, no. 157, pp. 98. Figures 3 and 4 are by the courtesy of Anthony Turner. The remaining photos are by me.
The Sanskrit astrolabes, however, carry a sighting tube in most of the cases. In India, the sighting tube was used as an independent device to view celestial bodies.18 It was called \textit{Nalaka-} or \textit{Nālikā-yantra} and was described in several Sanskrit texts.19 Apparently Hindu astronomers decided, at quite an early period, to combine the already known sighting tube with the newly imported astrolabe. This, no doubt, facilitates the sighting, but prevents the calibration of the upper surface of the alidade and thus divests it off the trigonometric functions envisaged for the alidade in Islamic tradition. No Sanskrit text appears to mention this innovation.

The surface of the back is divided into four quadrants by the diameters drawn in the south-north and east-west directions. The edge of the entire surface is occupied by a degree scale. As in the front, here also the inner band of the scale is graduated in single degrees and the outer band is divided into groups of three degrees. But here the groups of three degrees are labelled separately for each quadrant, starting from the east or west points and proceeding towards the south or west points. The degrees scales in the upper half, starting from the east and west points and reaching the south point, are useful for measuring the angle of altitude of a heavenly body situated to the east or west of the meridian. Those in the lower half can also be used for the same purpose, but are actually redundant. Islamic astrolabes carry cotangent scales in the lower half, but these are not met with in Sanskrit astrolabes.

The spaces inside the circular scale in the four quadrants are filled with different trigonometric graphs. The upper left quadrant contains a sexagesimal sine graph, with sixty horizontal parallel lines drawn at equal intervals. These are numbered serially, three at a time, on the right along the vertical radius, starting from the centre and proceeding upwards as 9, 12, 15, \ldots 54, 57, 60. While the angle of altitude is measured on the circular degree scale on the left edge, the sine of the angle can be directly read off the vertical scale on the right. An arc is drawn at 24° inside the quadrant to mark the obliquity of the ecliptic. The quadrant is divided by three radii into three sectors of 30° each. In these sectors are engraved the numbers 1 to 12 in the following manner. In the first row immediately next to the arc of the obliquity are the numerals 1, 2, 3, written in each sector. The tops of these numerals are towards

Figure 1: The Front of the Astrolabe
Figure 2: The Back of the Astrolabe
the degree scale in the circular edge. In the next row are the numerals 6, 5, 4 (as read from left to right). These are upside down (i.e., the tops are towards the centre). In the third row are 7, 8, 9 with orientation as in the first row. The fourth row has numbers 12, 11, 10, with orientation as in the second row.\footnote{Probably these numbers refer to the 12 signs of the zodiac. In a sine quadrant made by Jamāl al-Dīn Muḥammad ʿAlī al-Ḥusaynī in AH 1273 (AD 1856-57), in the space between the arc of the quadrant and the corner of the plate are engraved the names of twelve signs in the same order. However, I am unable to explain the arrangement. Does this have to do with some type of classification of the signs? The quadrant is now with the Rampur Raza Library; cf. Sreeramula Rajeswara Sarma, \textit{Astronomical Instruments in the Rampur Raza Library}, op. cit., pp. 76-77 and Fig. 9.1 on p. 75.}

The upper right quadrant contains a series of curves for unequal hours, which are numbered from 1 to 12. Of the seventeenth-century Sanskrit astrolabes, only the astrolabe made for Indrajī in 1673 has this feature. Otherwise it occurs rarely in Sanskrit astrolabes and also in Indo-Persian astrolabes.\footnote{Mahendra Sūri, \textit{Yantrarāja} 3.3 (see Appendix) mentions that the quadrants on the back should be filled with a sine graph, a declination graph and shadow squares. So does Rāmacandra Vājapeyin, \textit{Yantraprakāśa} 2.7d: \textit{kecit procur apakramāmśa-guṇa-sāṅkvābhā-sātiṃ tatra ca}, ‘Some prescribe there the setting up (śhītī) of the declination (apakrama) [graph], sine (guṇa) [graph] and gnomon shadow (sāṅkvābhā) [squares].’}

In the lower half are engraved shadow squares, on the left for a gnomon of 12 digits, and on the right for a gnomon of 7 digits. The scales are numbered, but there are no labels.

The seventeenth century Indo-Persian astrolabes contain, besides these trigonometric graphs, much astrological data on the back. The Sanskrit astrolabes rarely follow this practice, and the present astrolabe is no exception.

On the inner side of the mater, on the meridian line below the centre and somewhat close to the rim, is a pin affixed at right angles to the surface of the mater. This pin holds the latitude plates firmly in position and prevents them from rotating around the centre.

On the same inner side, in the upper half is an inscription, mentioning the name of the patron who caused this astrolabe to be made and the date of manufacture. The inscription will be discussed below in section 3.

\section*{2.3 The Latitude Plates}

The recess formed by the upraised rim of the mater accommodates six thin circular plates. These are called in Sanskrit \textit{aṅkā-patra} or \textit{aṅkāmśa-patra}, because each face of the plate carries stereographic projections of the heavens
related to a specific terrestrial latitude (akṣa, akṣāṃśa).22

These six plates (Figures 3 and 4) have a diameter of 252 mm. There is a hole at the centre through which passes the pin that holds together all the components of the astrolabe. This pin, like the centres on all the plates, defines the north celestial pole. Below the centre, on the lower half of the meridian, there is another hole. When the plates are stacked together inside the recess, the short pin projecting from the lower half of the mater passes through this second hole in the plates and holds them firmly in position.

On both faces of all the six plates, the projections are drawn in the following manner. First the four cardinal directions are marked on the face of the plate, by means of the east-west diameter (pūrva-parasūtra) and south-north diameter; the latter represents the meridian line (khamadhyā-sūtra) or the 12 o’clock line (madhyāhna-rekha).

Then taking the radius of the plate as 30 units, three concentric circles are drawn with radii of 30, 19;38 and 12;51 units respectively. The outermost circle with the radius of 30 units forms the periphery of the plate and defines the tropic of Capricorn (makara-horatra-vṛtta). The middle circle with the radius of 19;38 units represents the celestial equator. The inner circle with the radius of 12;51 units is the tropic of Cancer (karka-horatra-vṛtta).

Against this grid is drawn the local or oblique horizon (kṣitija-vṛtta). Above the arc of the horizon circle, the equal altitude circles or almucantars (umnata-vṛtta) are drawn for each 3 degrees of arc,23 with varying radii and varying centres (which are all situated on the meridian).24 All the equal altitude circles are numbered on the right as well as on the left, as 3, 6, 9 … 90. The rows of the numbers form a pattern that looks like a rounded Roman character ‘M’, as in the Indo-Persian astrolabes.

It is worth noting that no azimuth lines (digamsā-vṛttas) are drawn on any

22On the construction of the latitude plates, see Mahendra Sūri, Yantra-rāja 3.5-7, Appendix.
23In Islamic tradition, astrolabes are classified according to the number of almucantar circles drawn on the latitude plates. Mahendra Sūri also mentions this classification at Yantra-rāja 3.1, (see Appendix). Therefore this astrolabe belongs to the tripartite (Arabic: thulḥī) class. The tripartite arrangement can be seen also in the degree scale on the front and back of the mater, in the vertical scale of sines in the upper left quadrant on the back, and in the subdivision of the signs in the ecliptic ring on the rete.
24Mahendra Sūri teaches the method of computing the radii (vyāsārdha) and the eccentricities (kendra) of different altitude circles in his Yantra-rāja 1.18-21. In his commentary (pp. 19-25) Malayendu Sūri provides the values of the radii and eccentricities, at six degree intervals, for six towns, viz. Tilanga (lat. 18°), Tryambaka (21°), Anahillapattana (lat. 24;30°), Tirabhukta (lat. 27°), Dilli (28;39°) and Nepālapura (31°).
plate, which are usually to be met with in Islamic astrolabes. In contrast, Sanskrit astrolabes rarely carry azimuth lines.

![Figure 3: Plate for the Latitude of Ahmedabad](image)

In the lower half of the plate, the arcs of the three circles representing the tropic of Capricorn, the equator and the tropic of Cancer lying below the oblique horizon are divided into 12 parts each. The corresponding points of division on the three arcs are joined, not by arcs as is the general practice, but by two straight lines. That is to say, the first point of division on the tropic of Cancer is joined to the first point on the equator by a straight line, and the first point on the equator is joined to the corresponding point of the tropic of
The Earliest Extant Sanskrit Astrolabe

Capricorn by another line. These lines are designated as unequal hour lines or seasonal hour lines. The unequal hours (viṣama-horā) are numbered with the numerals 1 to 12, starting at the western horizon and going up to the eastern horizon. The Hindus and Jains in India did not reckon time in unequal or equal hours, but in equal ghāfīs (of 24 minutes each) and began the day with the sunrise. Lines for equal ghāfīs, as commensurate with the actual practice in India, can easily be drawn, but strangely this has never been attempted in any Sanskrit astrolabe, although some Indo-Persian astrolabes have such lines.

Mahendra Sūri mentions only the curves for unequal hours as counted from the western horizon. But he also teaches a simple method for measuring time in equal ghāfīs as follows. First measure the sun’s altitude with the alidade on the back of the astrolabe. Note the sun’s longitude (ravy-amśaka) for the day from some almanac and locate that point (S) on the ecliptic in the rete. Rotate the rete in such a way that the point S touches the eastern horizon. Note where the first point of Capricorn (mrgāśya) touches the circular scale on the rim. Then rotate the rete once again so that S rests on the altitude circle corresponding to the sun’s altitude just measured. Note again where the first point of Capricorn touches the circular scale on the rim. The interval between the two positions is in degrees of arc. Divide it by 6. The result in ghāfīs is the time elapsed since sunrise.

25 The unequal hours are obtained by dividing the duration of the daytime and that of the night separately by 12. Except on the days of equinox, such hours vary from the day to the night, and from one day to the next, according to the seasons.
26 Mahendra Sūri, Yantrarāja 3.9 (see Appendix).
27 Ibid., 5.3-4ab:

"[Rotate the rete in such a way that] the sun’s [longitude in] degrees (ravy-amśaka) [as seen in the ecliptic, on the desired day] falls on the eastern horizon (bhūja) [if it is the forenoon] or on the western horizon [if it is the afternoon, and then rotate again so that the longitude] falls on the altitude degrees. The time degrees between the two positions of the first point of Capricorn (mrgāśya), each of which equals 10 palas, are divided by 6. The quotient in ghāfīs etc. is the time elapsed or the time to come in the day [in the forenoon and in the afternoon respectively]."
Finally, in the space between the oblique horizon and the tropic of Cancer on each face are engraved four items of data regarding the projections drawn on this particular face, viz. (i) the name of a town, (ii) its latitude (aṅkṣāh, \(\varphi \)) in degrees and minutes, (iii) the length of the midday equinoctial shadow (chāyā, \(\tan \varphi \)), in aṅgulas and vyaṅgulas, thrown by a gnomon of 12 aṅgulas and (iv) the length of the longest day at this latitude (paramadina)\(^{28}\)

\[^{28}\text{Christie’s: South Kensington, Time Measuring Instruments from THE TIME MUSEUM,}\]

\[^{28}\text{for sale by Auction, Thursday 14 April 1988, Catalogue, no. 157, pp. 98-99, mentions erroneously that the plates carry the length of half the longest day, but it is actually the length of the full day.}\]
in ghātīs and palas. In fact, (iii) the length of the midday equinoctial shadow and (iv) the duration of the longest day are dependent on (ii) the latitude and are its functions. Sanskrit astronomical texts provide formulas for converting any one of the three values into another. Islamic astrolabes generally mention only the latitude (al-ard) and the longest day (al-sā‘āt). Mahendra Sūri indeed recommends that these four items be engraved on the astrolabe plates.

The relevant inscriptions are reproduced below. The serial numbers for the plates and the designation of the two faces of the plates as ‘a’ and ‘b’ respectively have been added by us.

1a akṣāh 18 vījāpura chāyā 3/45 paramadināṃ 32/52
1b akṣāh 22/30 ujjāni chāyā 4/9 paramadināṃ 33/34
2a akṣāh 20/30 bahrānapura chāyā 4/30 paramadināṃ 33/16
2b akṣāh 23 amadāvāda chāyā 5/5 paramadina 33/38
3a akṣāh 25/52 kāṣī chāyā 5/45 dinamānāṃ 34/5
3b akṣāh 27/40 dhākā chāyā 6/20 paramadina 34/24
4a akṣāh 25/56 yodhapura chāyā 5/51 paramadināṃ 34/8
4b akṣāh 31/50 lāhora chāyā 7/30 paramadina 35/20
5a akṣāh 26/24 āgarā chāyā 6/ paramadināṃ 34/12
5b akṣāh 28/39 dillī chāyā 6/23 paramadināṃ 34/34
6a akṣāh 29/40# mulatānā chāyā 6/47 paramadini² 34/44
6b akṣāh 35/20 kāsmīrā chāyā 8/6 paramadi (not filled)

It looks as if the latitude value of Multan was first engraved as 39/40 and then corrected to 29/40. The values given for the equinoctial shadow and the longest day match the latitude value of 29/40. Pingree read the latitude as 39/40 and this wrong reading was reproduced by Turner in his catalogue.

This material is arranged and interpreted in Table 1. The towns are re-arranged according to increasing latitude.

Interestingly these plates are town specific and not latitude or climate specific. Except in the case of Dhaka, the latitude values are reasonably close to modern values. The Islamic astrolabes generally contain, besides the plates calibrated to specific latitudes, one more plate, one face of which is designated as ṣafihā mīzān al-‘ankabūt (plate for the measures on the rete) and

²Mahendra Sūri, Yantrarāja 3.25-27, gives formulas for converting local latitude into the duration of the longest day and the longest day into equinoctial shadow.

²Cf. Mahendra Sūri, Yantrarāja 3. 8 (see Appendix).
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Town Name as engraved</th>
<th>Modern Name</th>
<th>Latitude (aksiṭh)</th>
<th>Modern Coordinates</th>
<th>Equinoctial shadow (chaya)</th>
<th>Longest Day (paramadina) in ghatis and palas</th>
<th>Longest Day in hours and minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>bijāpura</td>
<td>Bijapur</td>
<td>18</td>
<td>16;50° E 75;47° N</td>
<td>3;45</td>
<td>32;52</td>
<td>13:08.48</td>
</tr>
<tr>
<td>2a</td>
<td>bahrānapura</td>
<td>Burhanpur</td>
<td>20;30</td>
<td>21;17° N 76;16° E</td>
<td>4;30</td>
<td>33;16</td>
<td>13:18.24</td>
</tr>
<tr>
<td>1b</td>
<td>ujjani</td>
<td>Ujjain</td>
<td>22;30</td>
<td>23;09° N 75;43° E</td>
<td>4;09</td>
<td>33;34</td>
<td>13:25.36</td>
</tr>
<tr>
<td>2b</td>
<td>amadāvāda</td>
<td>Ahmedabad</td>
<td>23</td>
<td>23;03° N 72;40° E</td>
<td>5;05</td>
<td>33;38</td>
<td>13:27.12</td>
</tr>
<tr>
<td>3a</td>
<td>kāśi</td>
<td>Varanasi</td>
<td>25;52</td>
<td>25;20° N 83;00° E</td>
<td>5;45</td>
<td>34;05</td>
<td>13:38</td>
</tr>
<tr>
<td>4a</td>
<td>yodhapura</td>
<td>Jodhpur</td>
<td>25;56</td>
<td>26;18° N 73;04° E</td>
<td>5;51</td>
<td>34;08</td>
<td>13:44.12</td>
</tr>
<tr>
<td>5a</td>
<td>āgarā</td>
<td>Agra</td>
<td>26;24</td>
<td>27;10° N 78;05° E</td>
<td>6;00</td>
<td>34;12</td>
<td>13:40.48</td>
</tr>
<tr>
<td>3b</td>
<td>dhākā</td>
<td>Dhaka?</td>
<td>27;40</td>
<td>23;43° N 90;26° E</td>
<td>6;20</td>
<td>34;24</td>
<td>13:45.36</td>
</tr>
<tr>
<td>5b</td>
<td>dillī</td>
<td>Delhi</td>
<td>28;39</td>
<td>28;38° N 77;12° E</td>
<td>6;23</td>
<td>34;34</td>
<td>13:49.36</td>
</tr>
<tr>
<td>6a</td>
<td>mulatāna</td>
<td>Multan</td>
<td>29;40</td>
<td>30;12° N 71;31° E</td>
<td>6;47</td>
<td>34;44</td>
<td>13:53.36</td>
</tr>
<tr>
<td>4b</td>
<td>lahora</td>
<td>Lahore</td>
<td>31;50</td>
<td>31;37° N 74;26° E</td>
<td>7;30</td>
<td>35;20</td>
<td>14:08</td>
</tr>
<tr>
<td>6b</td>
<td>kaśmīra</td>
<td>Kashmir (actually) Srinagar</td>
<td>35;20</td>
<td>34;06° N 74;51° E</td>
<td>8;06</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Geographical Data engraved on the Plates
the other as ṣafiḥa al-afāqiyah (plate of horizons). The former is a projection for the latitude which is the complement of the obliquity of the ecliptic, i.e. 90-23;50 = 66;30° or roughly 66°. This plate enables us to measure the longitudes and latitudes of all the stars marked on the rete. The plate of horizons contains the projections of families of horizons at several latitudes and is used for determining the times of sunrise and sunset at latitudes other than one’s own, or to determine the latitude from the time of sunrise or sunset. The present astrolabe does not have such a plate.

In sum, the plates in this Sanskrit astrolabe are generally calibrated as those in Islamic astrolabes, but differ from the latter in three details, viz. there is no plate for the ṣafiḥa mīzān al-‘ankabūt and the ṣafiḥa al-afāqiyah, they do not have azimuth lines, and on each face is engraved the length of the equinoctial shadow in addition to the usual data.

On all the six plates, the almucantar circles are well drawn. However, the calligraphy of the legends and numerals is not the same as that on the mater and is considerably inferior. The workmanship of these plates is also rather inferior to that of the mater.

2.4 The Rete

On the top of the six latitude plates rests the rete (bha-patra, bhacakra-patra), an openwork disc, somewhat thicker than the latitude plates (Figure 5). It carries the stereographic projection of the sphere of the fixed stars. With its 250 mm diameter, it is slightly smaller than the latitude plates. As on the latitude plates, here also the three concentric circles are drawn to represent the tropics and the celestial equator. The ecliptic (krāntivrta) is drawn with radius of 21;26 units from a centre situated on the meridian at 8;34 units south of the centre of the plate, so that it touches the tropic of Capricorn at the top and the tropic of Cancer below.

Some space is added inside the three circles of Capricorn, equator and ecliptic so that they have the shape of bands. The circular bands of Capricorn and equator are represented almost fully in the rete. The former is interrupted where the ecliptic touches it tangentially, while the band of the

31Mahendra Sūri explains the construction of the rete in his Yantrarāja 3.10-16, Appendix.
32Mahendra Sūri, Yantrarāja 1.66:

bhāgā bhacakrakendrasyāṣṭau liptā vedavahnutayaḥ
vyāsārdhasya dhāraṇol sa ranetrāṇi ca kramāt

‘The eccentricity (bhacakra-kendra) is 8 degrees and 34 minutes (i.e. actually 8.34 units where each unit is 1/30th of the astrolabe’s radius) and the radius (vyāsārdha) 21.26 [units].’
The ecliptic circle is divided into the 12 signs of the zodiac, in unequal divisions in proportion to the rising times of the signs at the equator (niraksodaya or laṅkodaya), i.e. right ascensions. On each sign the respective Sanskrit names are engraved somewhat carelessly as māṣa (sic! read...
mesa), vasā (vsrā), mithana (mithuna), karka, simha, kanyā, tulā, vṛścika, dhana (dhanyā), makara, kubha (kumbha), mīna. Each sign is further subdivided into 10 units of 3 degrees each and numbered as 3, 6, 9...24, 27, 30 in counter-clockwise direction. The divisions under Gemini (mithuna), however, are not numbered.

On this grid the positions of 24 prominent stars are marked on the basis of their longitudes (dhruvaka) and latitudes (viṣeṣā) and these points are connected to the nearest circles or bars in the form of star pointers (nakṣatra-cañcu), curved like tiger’s claws, with the names of the respective stars engraved on them. Ten of these are outside the ecliptic, i.e. to the south of it; while fourteen are inside the ecliptic circle, i.e. to the north of the ecliptic. The stars to the south of the ecliptic have southern declinations; those to the north of the ecliptic have northern declinations.

The names on the star pointers are generally correct, but with occasional errors. Sometimes, the vocalic symbols (mātras) on the top and below are missing. The engraver replaces Sanskrit kha with ṣa and ba with va. All the star names are taken from Mahendra Sūri’s Yantrarāja.

Table 2 below lists the stars on the rete, starting from the vernal equinox and proceeding in the order of increasing longitude.

The designation of no. 10 (Sirius, α Canis Maioris) as ārdralu (short for ārdra-lubdhaka) is problematic. In his Yantrarāja, Mahendra Sūri enumerates 32 astrolabe stars with their longitudes and latitudes. The 14th star in the list is ārdra (p. 26, verse 28). In the tables appended to the commentary, this star is mentioned as ārdra-lubdhaka (pp. 37, 41) and the corresponding Arabic name is given as sorāmānī or serāmānī. This is clearly an incorrect transcription of shīrā yamāṇīyah, i.e. Sirius (α Canis Maioris).

Besides the present astrolabe, several other seventeenth century astrolabes employ Mahendra’s designation for Sirius. Thus an astrolabe produced in 1644 for Manirāma employs the star names together with their serial numbers as assigned by Mahendra Sūri. Here Sirius is labelled as ‘ā, i.e., the 14th star in Mahendra’s list; therefore ā stands for ārdra-lubdhaka. In another astrolabe produced in 1618 and in another of 1669 Sirius is labelled as ‘ā.lu.’ i.e., short for ārdra-lubdhaka. The Sanskrit University of Varanasi.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Star Name as engraved</th>
<th>Star Name full/correct</th>
<th>Identification</th>
<th>Popular Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>samudrapakṣī</td>
<td>β Ceti</td>
<td></td>
<td>Deneb Kaitos</td>
</tr>
<tr>
<td>2</td>
<td>maghodara</td>
<td>Matsyodara</td>
<td>β Andromedae</td>
<td>Mirach</td>
</tr>
<tr>
<td>3</td>
<td>illegible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pre</td>
<td>Pretaśīrāḥ</td>
<td>β Persei</td>
<td>Algol</td>
</tr>
<tr>
<td>5</td>
<td>rohini</td>
<td>γ Tauri</td>
<td></td>
<td>Aldebaran</td>
</tr>
<tr>
<td>6</td>
<td>saṃmuṣa</td>
<td>Saṃmukha</td>
<td>α Aurigae</td>
<td>Capella</td>
</tr>
<tr>
<td>7</td>
<td>mithunapādapa</td>
<td>Mithuna-pāda-dakṣina</td>
<td>κ Orionis</td>
<td>Saiph</td>
</tr>
<tr>
<td>8</td>
<td>vamaskada</td>
<td>Mithuna-vāma-skandha</td>
<td>γ Orionis</td>
<td>Betlārix</td>
</tr>
<tr>
<td>9</td>
<td>mithunaha</td>
<td>Mithuna-hasta</td>
<td>α Orionis</td>
<td>Betlāgeuse</td>
</tr>
<tr>
<td>10</td>
<td>ardṛalu</td>
<td>Āḍṛā-lubdhaka</td>
<td>α Canis Maioris</td>
<td>Siriṣ</td>
</tr>
<tr>
<td>11</td>
<td>pramāva</td>
<td>Prathama-bāla-sīrṣa</td>
<td>α Geminorum</td>
<td>Castor</td>
</tr>
<tr>
<td>12</td>
<td>lubdhakavadha</td>
<td>Lubdhaka-bandhu</td>
<td>α Canis Minoris</td>
<td>Procyon</td>
</tr>
<tr>
<td>13</td>
<td>magha</td>
<td>α Leonis</td>
<td></td>
<td>Regulus</td>
</tr>
<tr>
<td>14</td>
<td>uttarāpṛāḥ</td>
<td>Uttara-phālgunī</td>
<td>β Leonis</td>
<td>Denebola</td>
</tr>
<tr>
<td>15</td>
<td>kākāśakaṇḍa</td>
<td>Kākā-skandha-paṅgaṇa</td>
<td>γ Corvi</td>
<td>Gienah</td>
</tr>
<tr>
<td>16</td>
<td>citra</td>
<td>α Virginis</td>
<td></td>
<td>Spica</td>
</tr>
<tr>
<td>17</td>
<td>svāṭi</td>
<td>α Bootis</td>
<td></td>
<td>Arcturus</td>
</tr>
<tr>
<td>18</td>
<td>viśāṣā</td>
<td>Viśākha-māṭr-maṇḍala</td>
<td>α Coronae Borealis</td>
<td>Alphecca</td>
</tr>
<tr>
<td>19</td>
<td>dhanukōṭi</td>
<td>Dhanuḥ-kōṭi</td>
<td>α Ophiuchi</td>
<td>Rasalhague</td>
</tr>
<tr>
<td>20</td>
<td>dhanuśīrā</td>
<td>Dhanuḥ-śarāgra</td>
<td>μ¹,² Sagittarius</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>abhijit</td>
<td>α Lyrae</td>
<td></td>
<td>Vega</td>
</tr>
<tr>
<td>22</td>
<td>śravaṇa</td>
<td>α Aquilae</td>
<td></td>
<td>Altair</td>
</tr>
<tr>
<td>23</td>
<td>kubha</td>
<td>Kakudapuccha</td>
<td>α Cygni</td>
<td>Deneb/Arided</td>
</tr>
<tr>
<td>24</td>
<td>pū ṃhā</td>
<td>Pārvabhādrapūḍā</td>
<td>β Pegasi</td>
<td>Sheat</td>
</tr>
</tbody>
</table>

Table 2: Stars on the Astrolabe Rete
owns an astrolabe which is not dated, but can be assigned to the seventeenth century. Here Sirius is labelled as ārdrā.38

However, ārdrā and lubdhaka are generally treated as two distinctly separate stars, the former standing for Betelgeuse (α Orionis) and the latter for Sirius. A large majority of Sanskrit astrolabes follow this nomenclature.39 It needs further investigation to explain this discrepancy in the use of the name ārdrā for astrolabe stars. All that can be said at this moment is that Sanskrit astrolabes of the seventeenth century seem to follow Mahendra Sūrī in naming α Canis Maioris as ārdrā or ārdrā-lubdhaka, while the astrolabes of the later period treat ārdrā and lubdhaka as two separate stars.

Leaving aside the circular and horizontal bands and the star pointers, the rest of the plate is cut off, so that through the resulting gaps the readings on the latitude plate just below can be read off. In the present rete, this task of removing the inner spaces is performed rather crudely. Furthermore, the tips of five pointers (Nos. 1, 3, 11, 13, 20) are not properly cut out so that the pointers are clearly visible. While the workmanship of the latitude plates is inferior to that of the mater, the workmanship of the rete is much worse. The calligraphy of the letters and numerals is also different from that on the latitude plates and on the mater.

Mahendra Sūrī40 recommends that the first point of Capricorn (makarāśya, Arabic: murī ra’s al-Jady) should be shaped as a projecting point so that it touches the scale on the rim as the rete is rotated around the centre. This feature does not occur in the present rete.

3 Authenticity and the Date of the Astrolabe

3.1 The Inscription

On the inner side of the mater is an inscription in six lines in elegant Devanāgarī letters of western Indian style (Figure 6), which reads as follows:

40Mahendra Sūrī, Yantrarāja, 3.16, Appendix.
śṛīganāḍhipatiḥ jayatu ∥
svasti śṛī saṃvat 1663 vārṣe śāke 1528 pravāra
rttamāne māghavādiḥ pratipadātithau ravidine
amāḍāvāḍanāgare mahās uratrāṇa pātaśāha śṛī
saliṃmasāharājye yaṃtrarāja jow caṇḍidāsaim
karāvyuḥ putra damodara paṭhanārtham∥ śubhaṃ bhavatu ∥

Figure 6: The Inscription on the Inner Side of the Mater

May the lord of the gaṇas (= Gaṇeśa) be victorious.

May it be well. In Saṃvat 1663, Śaka 1528 current, on pratipadā, the first lunar day of the dark fortnight (vādi) of Māgha, on Sunday, at the city of Ahmadabad, during the reign of the Great Sultan, the Badshāh, the illustrious Salīm Shāh (i.e., Mughal Emperor Jahangir), [this] astrolabe (yantrarāja, lit. king of instruments) was caused to be made (karāvyuḥ) by the astrologer Caṇḍidāsa for the purpose of the reading of [his] son Damodara. Let it be auspicious.
The sentence begins in Sanskrit, but ends in medieval Gujarati for canḍidāsaṁ karāvyu is medieval Gujarati (for Sanskrit canḍidāsenā kārītam). However, such linguistic mixture is not unusual in the ‘popular’ Sanskrit in medieval Gujarat.\(^{41}\) The engraver spelt the name Dāmodara wrongly as Damodara. The name of his father who commissioned the astrolabe should properly be Canḍidāsa, but Canḍidāsa is not incorrect either. He has the title jo\(^{°}\), which is an abbreviation of Jośi, ‘astrologer’.

Now we come to the provenance of this astrolabe and the history of interpretation of the inscription. Several years ago it was said to be in the private collection of a certain Roberto Riva and to have been exhibited at the Museum of Natural History, Houston, Texas.\(^{42}\) In 1976 it reached the auction house of Sotheby’s who consulted Francis Maddison, the then curator of the Oxford Museum of the History of Science which holds perhaps the largest collection of astrolabes. On 9 November 1976 Maddison wrote to David Pingree, Professor of History of Mathematics at Brown University, requesting him to decipher the Sanskrit inscriptions. In this letter Maddison describes the astrolabe as ‘a fairly crudely made Indian astrolabe, presumably of the 19th century, which I do not think should be categorized as a fake.’ Unfortunately, with this sentence Maddison set the course of the history of the subsequent interpretations. David Pingree translated the inscription and the data on the six plates, transcribed the names of the 24 stars marked on the star map and identified them.

The Time Museum at Rockford, Illinois, acquired this astrolabe soon afterwards, probably from Sotheby’s. An excellent catalogue of the astrolabes in this museum was prepared by Anthony Turner in 1985.\(^{43}\) While preparing the catalogue, Turner once more consulted David Pingree and also Jean-Pierre Verdet of the Paris Observatory.

Pingree took objection to the expression pathanārtham, ‘for the sake of reading,’ in the inscription: after all, an astrolabe is not read but used in observation. Lover of manuscripts as he is—he must have read thousands of

\(^{41}\) Professor Nalini Balbir, Paris, has kindly provided me this information on medieval Gujarati and assured that such mixture is not unusual in seventeenth century Gujarat. For documents of such ‘popular’ Sanskrit of earlier centuries in Gujarati, see Ingo Strauch, Die Lekhappaddhati-Lekhapānīśāki: Briefe und Urkunden im mittelalterlichen Gujarāt, Berlin 2002.

\(^{42}\) Christie’s, South Kensington, Time Measuring Instruments from THE TIME MUSEUM, for sale by Auction, Thursday 14 April 1988, Catalogue, no. 157, pp. 98-99.

manuscripts in several classical languages— he immediately concluded that the inscription was copied from a manuscript, in order to lend a veneer of antiquity to the astrolabe. Following his interpretation, Turner states in the Time Museum Catalogue:

The inscription on the mater engraved in a different hand can hardly be admitted as evidence for the date of the instrument. Indeed Pingree has suggested that the inscription was taken from a manuscript treatise (as the phrase ‘for the purpose of reading…’ would suggest) whence it was inaccurately copied, giving rise to some minor errors and one unreadable word. If this suggestion be accepted, then one might hypothesize that the instrument was made at a relatively late date by a metal-worker who, having some knowledge of both Lahore astrolabes and of astrolabe literature, combined aspects of each with the Hindu tradition to produce this eclectic instrument.\(^4^4\)

In 1988, the Time Museum decided to part with this astrolabe and several other instruments. Christie’s held a special auction of these instruments on 14 April 1988 in London. The auction catalogue assigns the astrolabe to ‘probably 19th century’. A footnote to the entry states:

This astrolabe appears in most respects to belong to the nineteenth century tradition of astrolabes engraved in Sanskrit for use in the Hindu community. The inscription in the mater cannot reasonably be taken as the date of the astrolabe, but remains a puzzle. It has been suggested that it was copied from a manuscript treatise on the astrolabe.\(^4^5\)

Therefore the auction house offered this astrolabe at a much lower price than it charged for a single plate Sanskrit astrolabe of the nineteenth century.\(^4^6\) In this auction, it was acquired by Saul Moskowitz, a dealer in scientific instruments of Marblehead, Massachusetts, USA. After his death, his collections were disposed of and the present owner acquired the astrolabe in question.

In spite of the high esteem in which I hold Francis Maddison, David Pingree and Antony Turner, I have to differ from their view.\(^4^7\)

\(^4^4\)Ibid, p. 122.
\(^4^6\)Ibid, no. 149, pp. 86-87.
\(^4^7\)Francis Maddison’s writings enriched my knowledge of the history of the astrolabe in different cultures. I had the privilege of reading Mahendra Sūri’s *Yantrarāja* with David Ping-
When these evaluations were made in the 1980s, nothing much was known about Sanskrit astrolabes. Things improved considerably since then. In the course of my project, I have identified more than a dozen Sanskrit works which discuss the astrolabe. I have also located nearly one hundred Sanskrit astrolabes in various museums and private collections.

Pingree et al thought that early seventeenth century is too early a date for Sanskrit astrolabes. But as mentioned above, I found nine other Sanskrit astrolabes produced in this century, most of them in Gujarat, and published some of these. In the light of this material, we have to draw a different conclusion about the date of the present astrolabe.

Turner thought that the astrolabe was made by a ‘metal-worker who, having some knowledge of both Lahore astrolabes and of astrolabe literature, combined aspects of each with the Hindu tradition to produce this eclectic instrument.’ I have explained already how Sanskrit astrolabes are produced. I have said that unlike in Islam, making scientific instruments did not develop into a specialized profession among the Hindu metal-workers. The initiative for the production of Sanskrit astrolabes came first of all from the astronomer, who prepared the initial drawings, and coaxed some reluctant brass worker to prepare the astrolabe according to his drawings. That is why there are often orthographic errors in the star names.

Furthermore, it is not customary in India for the artisans to sign their products. But in Islamic culture, there are many instances of metal workers signing their creations. Islamic astrolabists, who enjoyed great prestige, naturally signed their products with their names. In fact, even the earliest surviving astrolabe produced in the Islamic world in 927 bears the name of its maker Naṣṣūlūs.49

48 Cf. Kjeld von Folsach, *Islamic Art: The David Collection*, Copenhagen, 1990, p. 183: ‘Except for the art of the book it is also in the field of metalwork that most artists’ names were recorded, and in that of scientific instruments we nearly always know of the name of the maker.’ The David Collection contains an astrolabe and a quadrant (p. 214, nos. 361 and 362), both of which are signed and dated by the respective makers, but more interesting is an ornate brass jug (p. 247, no. 347) which is inscribed with the name of Ali ibn Muhammad Ali Shahab al-Ghuri.

Hindus, who were attempting to follow Muslims in the production of astrolabes, tried to emulate the custom of signing the products as well. It is reasonable to assume that the astrologer Čaṇḍīdāsa commissioned the astrolabe for his son Dāmodara. He himself prepared the drawings and got them executed by an unnamed metal-worker. Čaṇḍīdāsa also wanted to have the date and purpose of the instrument engraved on the astrolabe. In the Sanskrit culture of Hindus and Jains, such inscriptions occurred hitherto only in manuscripts. Therefore, Čaṇḍīdāsa prepared the inscription for the astrolabe in the same style as was done in manuscripts. He did not copy the inscription from a manuscript as Pingree and Turner thought, but imitated the manuscript practice. Because Čaṇḍīdāsa was consciously imitating the manuscript practice, he used the expression ‘for the sake of reading’ (paṭhanārtham).\footnote{What other expression would be more suitable for the astrolabe? The first reaction would be to say vedhārthaṁ, ‘for the sake of astronomical observation or measurement.’ It is true that the astrolabe is used to sight a heavenly body and measure its altitude, but that is not the only function of the astrolabe; gananārtham, ‘for the sake of computation’ would not be entirely correct either because the astrolabe graphically shows the result that one would otherwise obtain by computation.} One may also argue that Čaṇḍīdāsa got this astrolabe made as a teaching tool for his son Dāmodara.\footnote{This recalls the case of Geoffrey Chaucer who wrote his book on the astrolabe for his little son Louis. Cf. Geoffrey Chaucer, The Treatise on the Astrolabe in: The Complete Works of Geoffrey Chaucer, ed. Walter W. Skeat, vol. III, Oxford, impression of 1996.} In any case, paṭhanārtham does not detract from the validity of the date in the early seventeenth century, especially in view of nine other Sanskrit astrolabes of this period. It has also been shown that what was thought to be an unreadable word (viz. karāvya) is actually medieval Gujarati and that such linguistic mixtures were common in the popular Sanskrit employed in medieval Gujarat.

This is one of the first attempts, somewhat clumsy no doubt, of emulating the Islamic custom of engraving the date of manufacture and the name of the maker. Later the custom took deep roots in Sanskrit tradition and people began to versify the inscriptions as well.\footnote{For example, a Dhruvabhrama-yantra made in 1785 (now in a private collection in Brussels) carries an inscription in Indravajrā metre:

\begin{verse}
munyabhāravāraikite sakaṁde śrī-kirticandrasya nṛpādhīpasya
dājñānusārād akarot suyaṁtram śrī-motilālābhuddha-śilpisimhāḥ
\end{verse}

‘In the Śaka year 1707 (= AD 1785), following the orders of the lord of the kings, śrī Kirticandra, śrī Motilālā, the lion among artisans, made this excellent instrument.’} It is worth noting that, while the inscriptions in Islamic astrolabes mention the maker of the astrolabe, those in Sanskrit astrolabes mention generally the patron who commissioned the
The calligraphy of the numerals in the inscription matches perfectly with the numerals in the degree scales on the front and the back of the mater. The letters of the inscription are quite similar to those engraved on the top of the crown (Figure 7). Thus the numerals and letters in all the engravings on the mater, namely the short inscription on the crown, the long inscription on the inner side of the mater, the degree scales on the front and the back of the mater are all alike, and belong to the western Indian style of Devanāgarī of the early seventeenth century. Moreover, the graph of unequal hours in the upper right quadrant at the back indicates an early date.

The actual problem is not with the inscription on the mater, nor with the mater itself. The mater, a piece of excellent workmanship, and excellent calligraphy, in spite of minor errors in the inscription, fits very well in the early seventeenth century. The problem is with the remaining parts. For the numerals and letters on the six plates do not match with those on the mater; again the numerals and the letters on the rete do not match with those on the mater (Figure 8) or with those on the plates.

There is also a difference in the workmanship in these three components. The mater is elegantly produced. The plates do not show such good work-

\[53\text{There are of course a few cases where the makers themselves signed their names on Sanskrit instruments. Thus Sonī Morārjī of Saurāṣṭra, Gujarat, inscribed his name on two identical Dhravabhrama-yantras which he produced in 1815. Likewise Bhālimal (fl. 1839-1850) of Lahore produced some twenty instruments of diverse types and inscribed them in Arabic/Persian or Sanskrit. Five of these carry Sanskrit legends and signatures in Anusṭubh metre.}\]
manship, even though the almucantars lines are well engraved there. The rete displays very poor workmanship. Francis Maddison’s observation that it is ‘a fairly crudely made Indian astrolabe’ applies especially to the rete. The rete is indeed very crude and does not match with the workmanship of the mater.

Figure 8: Above the Numerals on the Rim of the Mater; below the Numerals on the Rete

Clearly these three components, viz. mater (and the alidade with the sighting tube), plates and rete, are by three different hands and belong to three different periods. But the mention of the equinoctial shadow in addition to the longest day on the plates fits in well with the seventeenth century practice, as we have shown above. Likewise, the designation of Sirius as āndra-lūbdhaka on the rete indicates an early period. The only conclusion that can emerge from this is that the plates and the rete were made at later periods to replace the damaged original components. The persons who commissioned these replacements did not design the plates and the rete anew, they had access to the original damaged parts which they got copied as best they could. Thus the plates and the rete, through prepared in later periods, retain some elements of the seventeenth century Sanskrit astrolabes. Therefore these replacements are also valuable as indirect witnesses to the seventeenth century practice.

3.2 The Date

The inscription reads ‘Saṃvat 1663, Śaka 1528 current, on pratipadā, the first lunar day of the dark fortnight of Māgha, on Sunday’. Pingree converted this date to 1 February 1607. But when this date is reconverted using the
The Earliest Extant Sanskrit Astrolabe

PANCANGA program,54 we get Thursday Māgha śukla 5 Śaka 1528, instead of the original date. This happens because Pingree apparently did not pay attention to the expression pravarttamāne (current) in the inscription.

When we now convert Māgha krśna 1 (pūrṇima) in the current Śaka year 1528 with the PANCANGA program, we get Monday, 26 December 1605. When this date is adjusted for the weekday, the result is Sunday, 25 December 1605. On that day the pratipadā tithi commences after sunrise.55

There is one more reason in support of the earlier date. Just two months previous to this date, i.e. on 24 October 1605 Salīm Shāh ascended the throne at Agra and assumed the name Nūr al-Dīn Jahāngīr. But the title is still new. Therefore the use of Salīm Shāh was more appropriate two months later on 25 December 1605 than fifteen months later on 1 February 1607.

Thus it cannot be doubted any more that the astrolabe was indeed produced originally in 1605. Until some other piece turns up, this Yantrarāja commissioned by the astrologer Čandīdāsa for his son Dāmodara remains the earliest extant Sanskrit astrolabe. It is also worth noting that the original design of this astrolabe closely follows the prescriptions given in the earliest Sanskrit manual on the astrolabe, viz. the Yantrarāja by Mahendra Sūri.

Appendix

Mahendra Sūri’s Yantrarāja on the Construction of the Astrolabe56

2.1-6: Constitution of the Astrolabe

\begin{verbatim}
ādau yantraṁ mṛṇmayam dhātujaṁ vā vistīrṇaṁ ca svecchayā kārayitvā
dairghyavāsau pālivṛttasya tasminn āryaiḥ kārayau yantracakraṇumānānāt
||1||
yāṁye bhāge 'syā trikoṇaṁ kirītam idṛg yantraṁ koṣṭhakāgāram uktam
madhye tasya svaccaṅkṣāṃśakānāṁ patrāṇy anyāny unattāṃśāśritāṁ
||2||
ekaṁ patrāṇāṁ conṇatāṃśāsya patrād dvighnaṁ piṇḍe sādhaniyaṁ tato 'nyat
laṅkotpanno rāśayo meṣamukhyāḥ saṃsthāpyante yatra dhīṣṇyaiḥ sametāḥ
||3||

patrāṇya evam koṣṭhakāgāramadhye muktvā sādhyaṁ teṣu pūrvāṅkaśṭhāḥ
prṣṭhe yantrasyāyate dve bhujāgre sūkṣme kṛtvā chidram antarbhujat ca
||4||
\end{verbatim}

54http://www.cc.kyoto-su.ac.jp/~yanom/pancanga/index.html created by M. YANO and M. FUSHIMI.

55Prof. Michio Yano of Kyoto Sangyo University, the co-author of the PANCANGA program, has kindly confirmed my conversion.

56The printed text (see n. 5 above) has many errors which are silently corrected here.
First get an instrument (i.e. disc) (yantra) of desired size (vistārṇa) prepared out of clay or of metal. Then the noble persons should fix on that [disc an upraised] rim (pālivṛttā) with height and breadth appropriate to the size of the astrolabe.

On the southern (i.e. the upper) part of the disc, [there should be] a triangular crown (kirīṭa). Such a component is called the mater (kośṭhakāgāra, lit. store-house, repository). Inside this [are placed] as many latitude plates (aṅkāsakānāṃ patrāṇī) as one wishes, which are endowed with [circles of equal] altitudes (unnaṭāṃśa).

Prepare another plate with double the thickness of the plates bearing the [circles of] altitudes. On this plate will be marked the zodiac signs starting from Aries, according to their rising times at the equator (laṅkā) together with [some prominent] fixed stars (dhiṣṭya).

Insert these plates inside the mater (kośṭhakāgāra) and mark on [each face of] them the cardinal directions like east etc. At the back of the instrument, [attach] a long arm (i.e. alidade) with pointed tips and a hole at the middle.

At the front and back [of the arm] (i.e. on either end of the arm) set up (niveśye) two rectangular (abdhiķoṇa) sights (yantra-netra), having made (kḷptvā) holes in them. Into the hole [at the middle of the alidade], insert the pin which represents the north celestial pole (meru-kīla) so that it passes through the series of latitude plates (dala). Into [the other end of] this pin, insert a horse-headed wedge (ghoṭikā).

In the triangle [of the crown], make a small hole at [the apex of] the triangular [crown], insert into it the shackle (kaṇṭika), which is shaped like the scorpion’s sting, into it a ring (mudrikā) and then pass through it a string called the suspender (lambika). Thus is the astrolabe constituted.
The Earliest Extant Sanskrit Astrolabe

The astrolabe is said to be of six kinds [according as the altitude circles] are drawn (kāpti, lit. arrangement) up to ninety [degrees], [with one circle] for each one (eka), two (dvī), three (tri), five (iṣu), six (aṅga), [or] ten (paṅkīti) degrees (aṃśā). It is also of two varieties, northern (saumya) and southern (yāmya). When these two are combined, there is one more variety called the composite (miśra).

3.2-3: Back of the Astrolabe

vṛttadvayam karkatakaṇena pṛṣṭhe yantrasya nirmāya catur diśo 'nkyāḥ
prāgyāmyagāḥ koṣṭhagatās tatas ca sthāpyāḥ kha-nanda-pramitonnatāmśāḥ

vṛtte dvitiye likhitonnaṭmśā rekhā vilekhyā pratibhāgājātāḥ
pakṣatraye 'apakramajā vibhāgāḥ śaṅkuprabhā prāg gaditā tathā jyāḥ

On the back of the astrolabe, draw two annuli (vṛttā, lit. circle) with a pair of compasses (karkaṭa) and mark the four cardinal directions. Then between the east and west points, mark out ninety (kha-nanda) degrees of altitude in separate cells (koṣṭha).

In the second annulus, mark the lines for each degree corresponding to the degrees of altitude written [in the first annulus]. Then in three quadrants (pakṣa) draw respectively the units of declination (apakramaja vibhāga), gnomon shadows (śaṅkuprabhā) and the afore-mentioned sines (jyā).

Thus the calibration of the back of the astrolabe (prṣṭabhaṅgasādhana) is complete.

3.4: Front of the Mater

atha yantre koṣṭhākāgārasya pūrvaṇaṇaḥ kha
vṛttatraye pālīgatē kṛte prāg vrīte kṛtāṇtarato ghaṭīḥ ca
aṃśāṃ abhiṣṭān kha-rasāgni-saṃkhyān rekhās tadiyās tadadho vilekhyāḥ

57 There is some confusion here in the specifications for the four quadrants. Both the text and the commentary appear to be mentioning only three quadrants. The commentary states that units of declination should be drawn in the south-western quadrant (dakṣina-paścimāntarāla), shadow squares in the north-western quadrant (pasci-maṇḍya-nyāntrāla) and the sine graph (jivāνkāḥ) in the north-eastern quadrant (ugra-pāśevāntarāla). This makes sense only if is clearly stated that the shadows squares are drawn in the two lower quadrants. Moreover, the sine graph is usually drawn in the south-eastern quadrant, some times also in the south-western quadrant, but never in the north-eastern quadrant, as the commentary recommends.
Now he teaches the calibration of the front of the mater (koṣṭhāgārasya pūrva-paśa-sāḍhana) of the astrolabe (yantra).

Having drawn three [concentric] circles on the rim (pāli), in the first circle, mark the ghatīs, starting from the middle of the crown (kirīṭa). [In the middle circle] mark 360 degrees at desired intervals. Below that, draw the lines of their subdivisions.

3.5-8: Latitude Plates

atha saumyayantre iṣṭākṣaṁśāpatreśānnatavalayānāṁ sādhanaṁ āha l
yantram ca saumyme viracayya kambāṁ patrānūmāṇena vilikhyā tatra l
bhāgāṁ kharāṁmān racayed tadāṁśāṁ karkādivṛttatritayāṁ dalesu l||
digukiteśv eṣu ca madhyakendrād avācyarekhopari kendramāṇaṁ l
cihne kṛte tacehairasaṁ prthutamāṇena vṛttāṁ likhet sphuṭāṁ l||
bhūjākhyāṁ ādyāṁ bhavatiṁ vṛttāṁ tataḥ paraṁ connatamanḍalāṁ l
teṣāṁ likhed ānavater vibhāgāṁ śuddhāṁ inādyunnatātāvagayai ||
madhyaṁnarekham abhito 'syā karkavṛttasthithe prāgapare vibhāge l
kramāl likhed bhāṁ paramaṁ dinaṁ taddeśābhīdhānena tathākṣābhāgāṁ ||

Now he teaches how to draw the altitude circles (unnata-valaya) in the desired latitude plates (aksāṁśa-patra) in the northern astrolabe (saumya-yantra).

In the [case of the] northern astrolabe, prepare a ruler (kambā) according to the size of the plate (i.e. as long as the radius of the plate) and graduate it into 30 (kha-rāma) units (bhāga). With these units (aṁśa) draw the three circles of Cancer etc. upon the plates (dala).

On these plates, on which the cardinal directions have been marked [by means of N-S and E-W lines], make marks on the south line, starting from the centre, at distances measured by the values of eccentricity (kendra). Then from each of the marks as the centre draw clear circles with the measure of the radius (prthuta) [as given in the tables].

The first of such circles here is called the horizon (bhūja). Above that will be circles of altitude (unnata-maṇḍala). These [altitude circles] may be drawn clearly (śuddha) up to ninety degrees for determining the altitude (unnatatā) of the sun and other [celestial bodies].

On both sides, i.e., in the eastern and the western sides of the meridian or midday line (madhyāṁnā-rekha) situated inside the tropic of Cancer, one should write successively the equinoctial shadow (bhāga), maximum daylight (paramadina), the name of the locality (deśābhīdhāna) and the degrees of latitude (aṁśa-bhāga).
3.9: Unequal Hour Lines

atha saumyayantre horāsthāpanam āha
kujād adho dvīdāśadhā vibhajya mgāḍikarkāhvayamāṇḍalasaḥ
vidhāya vrūtāy abhiṭāḥ pratīcāḥ ānkaiviveśyā dvīdāśaṁi horāḥ

Now he teaches the construction of hour (horā) [lines] in the northern astrolabe.

Divide [the arcs of] the [three] circles of Capricorn, Aries and Cancer, which are situated below the horizon (kujā), into 12 parts each. Draw on both sides [of the meridian line, arcs of] circles (vyṛta) [through the respective points of division on these three circles] and number them from the west as the 12 hours (horā).

3.10-16: Rete

atha saumyayantre bhacakrapatre karkādvīrtatrayasādhanam āha
bhacakra-kendraprāmahāṇa bhamaṇḍalasādhanam tatra nirākṣameśādilagnāṇāṁ iṣṭa-bhāgānāṁ sthāpanāṁ āha
bhacakrapatre 'pi purāvai klpte vrūttrayē bhyantarato 'ṣṭabhāgān āhi
hintō kaloś cāḫdhīguṇān avācyē vyāsārdhamāṇaṁ vidhāya vrūṭtam ||10|| nirākṣameśādilagnāṇāṁ pūrvoditaṁ prāci nīveśyā caṇḍryāḥ
vrūte dvītye tadaṅgho nīveśyās tadaṅkāsaṃkhyā gānakaivyā nījeśṭāḥ ||11|| meṣe bhāgā kalāś cāpi dhīṣṇyāni gaganēṣvahā
vrūse nandārśō 'bdhyakṣā yugme dantaṁ śādindavah ||12||
vuytkramādt etā eva svaḥ karkāsimhakānīśv āpi ā
kanyādīśaṭkāmaṇāṁ syāt tuḷādu vaipaṛītyataḥ ||13||
vyaśākhyavṛttē 'jamukhānā santi lagnaṁ laṅkōdaśajānī yatra ā
rekhā hy udānāṁ pratībhāgaṭītāṁ tatraiva kendrābhimukhā vīlekhāḥ ||14||
kendrāt pratīpaṁ viracayā cihnaṁ dvijāyāpaṁāṇa ca karkaṇaṁ ā
tatraiva dhīṣṇyāsa yathoditaśya nīveśyām asyāgram aśiva sūkṣmaṁ ||15||
dhanurmṛṣṭantar niśtaṁ vīheṇaṁ cihnaṁ prasiddhaṁ makarāyaśanāṁ ā
yadhbrāṃyāmaṇaṁ ganaṇena vิṣvaṁ mūhuśa cumbati nāḍīvrntam ||16||
evaṁ saumyayantre bhacakrasādhanam saṁpūrṇam ā

Now he teaches how to draw the three circles of Cancer and others on the rete (bhacakrapatra), how to draw the ecliptic circle (bhā-mandala) by means of the given value of the eccentricity of the ecliptic circle (bhacakra-kendra) and how to mark there the divisions of the zodiac signs according to their ascendants at zero degree latitude (norākṣa-lagna).
On the rete (*bhacakra-patra*) also, after having drawn the three circles [of Capricorn, Aries and Cancer] as before, leave out from the centre of the plate 8;34 units [which is the eccentricity of the ecliptic] in the south (*avācyā*) (i.e. on the southern radius) [and with this point as the centre] draw a circle with the measure of the radius [of 21;26 units as shown in 1.66].

[On this circle], after having marked, from the east point onwards (*aindryāh*), the lengths of the right ascensions of the zodiac signs which have been mentioned before, in the second circle below the [previous one] the astronomer may mark their subdivisions according to his liking.

For Aries (*meṣa*) the degrees (*bhāga*) and minutes (*kalā*) [of right ascension] are 27/50; for Taurus (*vrṣa*) 29/54 and for Gemini (*yugma*) 32/16.

The same in reverse order pertain to Cancer (*karka*), Leo (*śimha*) and Virgo (*kanī*). The values of the six signs beginning with Virgo (*kanyā*) will apply in the reverse order to the six starting with Libra (*tulā*).

In the ecliptic circle (*vyāsākhya-vṛutta*) where there are the right ascensions (*laṅkodayajāni lagnāni*) of Aries and others, there draw the lines of stars, with the subdivisions, towards the centre.

With the measure of the day sine (*dyujyā*) make a mark away from the centre with the pair of compasses on that line. There at that point, create a very fine tip (*sūkṣmam agram*) for [pointer of] the afore-mentioned star.

Between Sagittarius (*dhanu*) and Capricorn (*mrga*) affix the well-known mark called the *makarāsyā* (face, or the first point of Capricorn), which touches the hour circle (*nādivṛtta*) again and again, when the rete is rotated all around by the astronomer.

Thus the preparation of the rete in the northern astrolabe is complete.