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Stnya in Pingala’s Chandahsatra

SREERAMULA RAJESWARA SARMA

mayarasatajabhanalagasammitam bhramati vanmayam jagati yasya/
sa jayati pingalandgah sivaprasadad visuddhamatih//
— Halayudha!

The importance of the creation of the zero mark can never be exaggerated. This
giving to airy nothing, not merely a local habitation and a name, a picture, a
symbol, but also a helpful power, is the characteristic of the Hindu race whence
it sprang. It is like coining the Nirvana into dynamos. No single mathematical
creation has been more potent for the general on-go of intelligence and power.

— G.B. Halsted?

I

The Chandahsiitra of Pingala® constitutes an important landmark in the
history of the decimal place value system for it mentions, for the first
time, zero (siinya) and its symbol. Even though it describes a large number
of classical metres in addition to Vedic metres, this text is traditionally
considered a Vedanga. It is composed in sitfra style and contains some
310 siitras, distributed into eight chapters. The descriptive technique
employed by Pingala has close affinity with that of Panini.* Similarity in
notation has also been noticed between the Chandahsiitra and the
Vedangajyotisa. Both these texts employ the first or the final syllable of
the names of the naksatras as their designation.® The Chandahsiitra also
introduced a kind of algebraic notation for the classification of prosodic

. _units as ma-gana, ya-gana and so on. Significant for the history of numerical

notation in India is also the fact that the Chandahsiitra employs the so-
called word-notation or bhittasamkhyd quite frequently.
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The German indologist Albrecht Weber was the first to make a critical
study of the Chandahsiitra as early as 1863, under the title “Uber die
Metrik der Inder” in the eighth volume of his journal Indische Studien.
Since then the text did not receive critical attention, although there is an

urgent need of a fresh discussion on the constitution of the text and its
chronology.”

I

S’ﬁuya is mentioned in the Chandahsiitra in the context of what are
technically known as pratyayas.® It is, therefore, necessary to give a brief
overview of these pratyayas. As is well known, the poetic metres in
Sanskrit are constituted by the varying arrangements of two kinds of
syllables, viz. long syllables (guru) and short syllables (laghu). Pratyayas
deal with problems of combinations of these syllabic lengths in a verse-
foot (pada). In the last fifteen siitras of the final eighth adhyaya, Pingala
discusses five pratyayas, viz. Prastara, Nasta, Uddista, Samkhyi and Eka-
dvy-adi-ga-la-kriya. In an admirable study, Van Nooten has shown recently
how for the first time in history Pinigala employed here “the binary number
as a means for classifying metrical patterns™.® I may briefly explain each
of these pratyayas, and against this background dwell at length on the
fourth pratyaya called Samkhya which is relevant to our discussion of
siinya.

PRASTARA:!®

It is the arrangement of all possible combinations of guru and laghu in a
given metre. It must be added that Pirigala deals here only with samavrttas,
i.e. metres where all the four feet of the verse have identical patterns.
Therefore, he takes into consideration only the verse foot (pada). For
example, if the foot of a particular metre contains three syllables, its
Prastara will be as shown in following table. Here ¢ denotes guru and !
laghu.

It will be seen that in the first variation, all the three syllables are
gurus and that in the last all are laghus. How was this table achieved?
An examination will show that in the first column, single guru (2°)
alternates with single laghu; in the second column two gurus (2') alternate
with two laghus; and in the third column four gurus (2% alternate with
four laghus. This can be continued for any number of syllables in the
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verse foot. That Pinigala, however, stops with three syllables has a special
reason. These eight variations of three syllables give rise to the so-
called ganas with which the metres are scanned or classified. As I said,
Pingala designates these eight variations with a kind of algebraic notation:
the first variation with all gurus is designated m or — for the convenience
of clear pronunciation — ma, or ma-gana and so on. In fact, the Chandahsiitra
commences with the definition of these eight ganas in this very sequence.
And now, towards the end, Pingala demonstrates how these eight ganas
are achieved."

1. ggg m ma ma-gana
2. lgg vy ya ya-gana
3. glg r ra ra-gana
4. llg s sa sa-gana
5 ggl ¢t ta ta-gana
6. gl j ja ja-gana
7. gll bh bha bha-gana
8. Il n na na-gana

Nasra:'?

The second pratyaya called Nasta is the process of finding out the pattern
of a specified variation. Given the serial number of the variation within
the Prastara, its pattern has to be found out without actually constructing
the Prastara. This is achieved by the continuous halving of the given
serial number. Whenever it is divisible by 2, we write down a laghu or
‘I’. When it is not divisible, we write down a guru or ‘g’, add | to the
number and continue.

For example, we may find out the form of the variation no. 5 in the
Prastara for 3 syllables, as we have constructed above. We go on halving
the number 5.

5 is odd, write down g, add 1 to 5 and halve: (5 + 1)/2 =3

3 is odd, write down g, add 1 to 3 and halve: 3 + 1)/2 =2

2 is even, write down [, halve: 2/2 = 1.

Therefore, variation no. 5 has the form g g I.

1
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Upbpista:®

In the next pratyaya called Uddista, the pattemn is given and its serial
number within the Prastdra has to be found out. Thus it is just the reverse
of Nasta and need not detain us.

EKA-DVY-ADI-GA-LA-KRIYA: '

It is the process (kriya) of classifying the variations into those having
one guru, those having two gurus and so on (eka-dvy-adi-ga). For this
purpose a pyramid (meruprastara) is constructed in the following manner
with n + 1 rows, or in the present case with 3 + 1 = 4 rows.

1

1 2 1
1 3 3 1

The last row provides the answer to the problem. It shows that in
the Prastara of 3 syllables there are:

1 form with 3 gurus (and 0 laghu)

3 forms with 2 gurus (and 1 laghu)
3 forms with 1 guru (and 2 laghus)
1 form with 0 gurus (and 3 laghus).”

I

Now we come to the pratyaya called Samkhya and the mention of sinya
therein. This is the method for computing the total number of
arrangements of long and short syllables without actually constructing
the Prastara. In modermn mathematical parlance, this is the number of
combinations of two things in ‘n’ places, repetition being allowed. There
are several ways of solving the problem. We have just seen in connection
with the Prastara that the number of combinations equals to 2" where n
indicates the number of syllables in the verse foot. Therefore, all one has
to do is multiply 2 as many times as there are syllables.'® Another method
is to add up all the numbers in the bottom row of the number pyramid.
In the case of three syllables, this will be:

1+3+3+1=8.
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But Pingala teaches a much more complex method which, as will be
shown presently, is of great importance. The method is enunciated in
four pithy sitras:

dvir ardhe / ripe siinyam / doili sanye / tavad ardhe tad gunpitam /7

By completing the sentences, these siitras may be rendered into English
as follows :

“ [First write down the number of syllables in the given metre and go
on halving that number. Each time] when [the number is] halved (ardhe),
[write down in a separate row or column the digit] 2 (dvih).

“[When you reach an odd number, subtract 1 from it.] Whenever 1 [is
subtracted (riipe), write down in a separate column a] zero (sinyant).

“[Continue thus until the process stops. Then where you wrote a]
zero (Sanye), [multiply by] 2 (dvih).

“Where [the number was] halved (tdvad ardhe), multiply [the result of
the second process] by itself (fad gunitam)”.

The import of these sittras will be clear from a concrete example. We
take the sacred Gayatri metre which has six syllables in each pada.
Required are the number of variations when each one of the six syllables
is either a guru or a laghu. We know already that the answer will be 26.
But let us see where Pingala’s method leads to. We proceed as follows:'

A B C
1. Write the number of syllables 6
2. Halve 6 3 2 (22.2)
3. 3 cannot be halved; therefore
reduce it by 1. 2 0 222
4. Halve 2. 1 2 i
5. 1 cannot be halved; therefore
reduce it by 1. 0 0 1.2
Stop! . Commence!

In column A, the number of syllables is successively halved and,
whenever there is an odd number, it is reduced by 1. In column B, on the
other hand, we write the two kinds of markers: ‘2’ when halving is
possible and ‘0" when it is not. When halving comes to an end in column
A, the process now continues in column C from below, opposite the last
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marker in column B. Taking unity, double it whenever there is a ‘0’ in
column B and square it whenever there is a *2’. At the top of column C,
we obtain the result, viz. (22.2)* which is, of course, equal to 2.

The process laid down by Pirgala reduces the number of operations.
In the case of Gayatri, if we try to compute 2¢, we have to multiply 2 by
2 five times, i.e. it involves five operations. Pingala’s method involves
only three: (i) squaring 2; (ii) multiplying by 2; and (iii) squaring again.”

Important for the present discussion, however, is the fact that Pingala
uses the symbols for zero and two as markers for distinguishing between
two kinds of operations. The symbol of two marks the place where there
is an even number which is divided by 2 and where squaring has to be
done later; the symbol of zero marks the stages where there is an odd
number and consequently absence of halving and where multiplication
by 2 has to be performed. Thus two symbols were used here in a
meaningful way. The whole computation can of course be done without
any markers at all or with any two arbitrary symbols. However, the fact
that Pingala uses these two markers shows that at Pingala’s time there
existed a well recognised symbol for mathematical sinys. A symbol
presupposes a concept. What kind of mathematical concept lay behind
this symbol for simya? From Pingala’s use, it may appear that sinya
meant here the absence of an operation, akin to the grammarian’s lopa.
But is that all, or does siinya here imply a place value system as well ?2

It is useful in this connection to consider the view of Joseph Needham
who states that “Place value could and did exist without any symbol for
zero. ... But zero symbol as part of the numerical system never existed
and could not have come into being without place value”.?

Therefore, Pingala’s employment of zero symbol presupposes place
value. That it can only be decimal place value needs no emphasis. Vedic

literature is replete with decuple terminology such as eka, dasa, sata and

so forth. To sum up this discussion, Pinigala could have used any other
marker. But that he used a marker called siinya establishes without any
doubt that a symbol for zero was quite well known in his times. We do
not know what kind of zero symbol it was, but a zero symbol presupposes
place value. Therefore, the invention of decimal place value system along
with the concept and symbol of zero must antedate considerably Pirigala’s
mention of the zero symbol. But when did Pingala live?
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In an entry on the “Mathematical Aspect of Stinya” contributed to the
second volume of Kalatattvakosa, I noted that Pingala’s time “is variously
placed between 400 to 200 B.C.” and therefore concluded that “there is
enough indirect evidence to say that the decimal place value system
with symbols for 1 to 9 and zero developed in India much before the
beginning of the Christian era”.?

This time-frame was contested by a scholar who argued, following
Weber, that the Chandahsiitra was a late work and that, moreover, the
eighth chapter where the zero was mentioned was not original.?

Although I am reluctant to join the bandwagon of those who are
obsessed with establishing the Indian priority in every aspect in the
history of ideas, I must say that these two objections are not tenable. It
is admittedly difficult to postulate an absolute chronology for any of the
ancient Sanskrit texts, but many can be located in relation to other texts.
We have noted the close similarity in the method of exposition and
notation between the Chandahsiitra on the one hand and the Astadhyayi
and the Vedangajyotisa on the other. The affinity with these two texts
places the Chandahsiitra about 400 B.C. But I shall not press this point.
Weber’s objection to such an early period rests on the fact that the
Chandahsiitra contains several classical metres in addition to Vedic metres.
I believe that a re-examination is necessary of the nineteenth century
assumption that there existed a clear line of demarcation between the
Vedic and classical periods.*

As regards the second objection, we are on much firmer ground.
Pratyayas are discused in the last 15 sitras, i.e. from 8.20 to 8.34, of the
Chandahsiitra. The passage preceding this, viz. siitras 2-19, does not occur
in several manuscripts. Therefore, Weber dismissed the entire eighth
adhydya as not original. But the absence of siitras 2-19 in some manuscripts
does not establish that siitras 20-34 are not genuine. Indeed the whole
problematique of pratyayas has more to do with Vedic poetry than with
the classical poetry. Unlike the classical poetry, Vedic poetry endows
the metres with magical significance.” Playing with the arragements of
metres is a favourite pastime of the Veda and can be understood only
in the context of the magical significance of such variations. In his Rig-
Veda Repetitions, Maurice Bloomfield has shown that variation in metre
is a stylistic device in the Veda and that recurrence of otherwise identical
padas is accompanied by changes in the metre, which are mostly effected
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by extensions or abbreviations.? Moreover, the various modes of Vedic
recitation, such as the padapatha, kramapatha, jatapatha, ghanapatha deal
with arrangements of words in a manner not unrelated to the pratyayas.
Therefore, it is quite certain that the mathematics of the pratyayas
developed in the context of Vedic prosody? just as the geometry of the
Sulvasitras developed in the context of Vedic ritual.

But far more important is the following. The pratyaya-section of the
eighth chapter is not a loose appendage but is anticipated in the preceding
chapters of the Chandahsiitra. The text commences with the definition of
the eight ganas or triplets, viz. m, y, 1, s, t, j, bh, n, followed by the
definition of I and g. This sequence of triplets makes sense only in the
context of the Prastara of the eighth chapter as I have shown in Section
II above. Otherwise, Pingala could have enumerated the triplets in any
other sequence. Again at the beginning of the fifth chapter, Pingala defines
the sama-vrtta, ardha-sama-vrtta and visama-vrtta and states-that the
variations in the second and third categories are obtained by squaring
the number of variations in the preceding category (5.1-4). That is to say,
since the variations in a sama-vrtta of n syllables are 2", the number of
variations in an ardha-sama-vrtta will be 2° x 2° = 22"; and in a visama-vrtta
they will be 2> x 22 = 2*. This too is not unrelated to the pratyayas.
Clearly then the eighth chapter containing the combinatorics and the
first mention of Siinya is not a late interpolation but an integral part of
Pingala’s Chandahsiitra.”

To conclude, Pingala’s mention of siinya is a significant event in the
history of ideas. It shows that the decimal place value system with the
numbers 1 to 9 and zero developed in India before the beginning of the
Christian era.
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